18727 measured reflections

 $R_{\rm int} = 0.033$

4528 independent reflections

2888 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(3,4-Dimethoxyphenyl)-3-(3-methoxyphenyl)prop-2-en-1-one

Mohd Mustaqim Rosli,^a P. S. Patil,^b Hoong-Kun Fun,^a* Ibrahim Abdul Razak,^a S. M. Dharmaprakash^b and Y. E. Satheesh^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India Correspondence e-mail: hkfun@usm.my

Received 4 June 2007; accepted 5 June 2007

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.002 Å; R factor = 0.060; wR factor = 0.211; data-to-parameter ratio = 22.4.

The title compound, $C_{18}H_{18}O_4$, was obtained as by-product in a search for nonlinear optical chalcones. In the molecule, the two benzene rings make a dihedral angle of 37.20 (8)°. The crystal packing exhibits weak intermolecular $C-H\cdots O$ interactions.

Related literature

For related crystal structures, see: Patil, Teh, Fun, Babu *et al.* (2007); Patil, Teh, Fun, Razak & Dharmaprakash (2007). For general background, see: Uchida *et al.* (1998); Watson *et al.* (1993). For our previous work on related compounds, see: Patil *et al.* (2006); Patil, Dharmaprakash *et al.* (2007). For related literature, see: Allen *et al.* (1987); Bernstein *et al.* (1995).

Experimental

Crystal data $C_{18}H_{18}O_4$ $M_r = 298.32$ Triclinic, $P\overline{1}$ a = 7.4583 (3) Å b = 10.7134 (4) Å c = 10.9600 (4) Å $\alpha = 107.062$ (2)° $\beta = 107.744$ (2)°

$\gamma = 98.220 \ (2)^{\circ}$
V = 770.96 (5) A ³
Z = 2
Mo $K\alpha$ radiation
$\mu = 0.09 \text{ mm}^{-1}$
T = 297 (2) K
$0.50 \times 0.40 \times 0.28$ mm

Data collection

Bruker SMART APEX2 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.891, T_{max} = 0.975$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.060$	202 parameters
$vR(F^2) = 0.211$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
528 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (A,	0)
----------------------------	---	---

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$C5 - H5A \cdots O2^{i}$ $C16 - H16C \cdots O2^{ii}$	0.93	2.57	3.468 (2)	162
	0.96	2.50	3.363 (3)	150

Symmetry codes: (i) -x, -y, -z + 1; (ii) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/671064). PSP thanks the DRDO, Government of India, for a Junior Research Fellowship (JRF).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2259).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111–116.
- Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Narayana Rao, D. (2007). J. Cryst. Growth, 303, 520–524.
- Patil, P. S., Teh, J. B.-J., Fun, H.-K., Babu, H. B. R., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, 01895–01896.
- Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, 02122–02123.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.
- Watson, G. J. R., Turner, A. B. & Allen, S. (1993). Organic Materials for Nonlinear Optics III, edited by G. J. Ashwell & D. Bloor. RSC Special Publication No. 137, pp. 112–117.

supplementary materials

Acta Cryst. (2007). E63, o3239 [doi:10.1107/S1600536807027560]

1-(3,4-Dimethoxyphenyl)-3-(3-methoxyphenyl)prop-2-en-1-one

M. M. Rosli, P. S. Patil, H.-K. Fun, I. A. Razak, S. M. Dharmaprakash and Y. E. Satheesh

Comment

During our search for non-linear optical chalcones (Patil *et al.*, 2006; Patil, Dharmaprakash *et al.*, 2007; Patil, Teh, Fun, Babu *et al.*, 2007; Patil, Teh, Fun, Razak *et al.* 2007), the title compound, (I) (Fig. 1), was synthesized. We present here a study of the molecular packing in (I), which crystallizes in a centrosymmetric crystal structure and hence don't exhibit second-order non-linear optical properties.

All bond lengths and angles in (I) have normal values (Allen *et al.*, 1987) and are comparable to those in related structures (Patil, Teh, Fun, Babu *et al.*, 2007;; Patil, Teh, Fun, Razak *et al.* 2007). The dihedral angle between the benzene rings is 37.20 (8)°. The least-square plane through the enone group makes dihedral angles of 18.8 (1) and 18.5 (1)° with the C1—C6 and C10—C15 benzene rings, respectively. The three methoxy groups attached at the atoms C4, C12 and C13 are almost coplanar with the attached benzene ring, with C16—O1—C4—C5, C17—O3—C12—C13 and C18—O4—C13—C12 torsion angles of 177.11 (14), -173.07 (14) and 174.17 (14)° respectively.

Chains of the molecules of the title compound are stabilized *via* two C—H···O intermolecular interactions which also form cyclic centrosymmetric $R^2_4(14)$ motifs (Bernstein *et al.*, 1995)

Experimental

Compound (I) was prepared by the condensation of 3-Methoxybenzaldehyde (0.01 mol) and 3,4-dimethoxyacetophenone (0.01 mol) in ethanol (60 ml) at room temperature. 10% NaOH aqueous solution (10 g) was added and the mixture was stirred for 4 h. The reaction mixture was poured on to ice cold water and kept aside for 12 h. The precipitate which formed was filtered off and dried. The resulting crude product was recrystallized twice from acetone. Crystals suitable for single-crystal X-ray diffraction experiments were grown by slow evaporation of an acetone solution at room temperature.

Refinement

All H atoms were geometrically positioned (C—H 0.93–0.96 Å) and refined using a riding model, with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.

Fig. 2. The crystal packing of (I), viewed down the c axis. Hydrogen bonds are shown as dashed lines.

1-(3,4-dimethoxyphenyl)-3-(3-methoxyphenyl)prop-2-en-1-one

Crystal data	
C ₁₈ H ₁₈ O ₄	Z = 2
$M_r = 298.32$	$F_{000} = 316$
Triclinic, PT	$D_{\rm x} = 1.285 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 7.4583 (3) Å	Cell parameters from 7560 reflections
b = 10.7134 (4) Å	$\theta = 2.1 - 30.1^{\circ}$
c = 10.9600 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 107.062 \ (2)^{\circ}$	T = 297 (2) K
$\beta = 107.744 \ (2)^{\circ}$	Block, yellow
$\gamma = 98.220 \ (2)^{\circ}$	$0.50\times0.40\times0.28\ mm$
$V = 770.96 (5) \text{ Å}^3$	

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer	4528 independent reflections
Radiation source: fine-focus sealed tube	2888 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.033$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\text{max}} = 30.1^{\circ}$
T = 297(2) K	$\theta_{\min} = 2.1^{\circ}$
ω scans	$h = -10 \rightarrow 9$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -15 \rightarrow 13$
$T_{\min} = 0.891, \ T_{\max} = 0.975$	$l = -15 \rightarrow 15$
18727 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.060$	H-atom parameters constrained
$wR(F^2) = 0.211$	$w = 1/[\sigma^2(F_0^2) + (0.1274P)^2 + 0.0391P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{max} < 0.001$
4528 reflections	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$

202 parameters

 $\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.22866 (19)	0.52126 (11)	0.48587 (12)	0.0732 (4)
O2	0.1287 (2)	-0.09232 (11)	0.65154 (11)	0.0763 (4)
O3	0.09181 (17)	-0.34403 (10)	0.97666 (11)	0.0610 (3)
O4	0.19517 (19)	-0.16003 (11)	1.21401 (11)	0.0680 (4)
C1	0.4955 (2)	0.40910 (16)	0.81197 (17)	0.0623 (4)
H1A	0.5551	0.3822	0.8843	0.075*
C2	0.5629 (3)	0.53736 (17)	0.81696 (19)	0.0706 (5)
H2A	0.6682	0.5967	0.8933	0.085*
C3	0.4782 (2)	0.57993 (15)	0.71157 (18)	0.0632 (4)
H3A	0.5251	0.6674	0.7169	0.076*
C4	0.3224 (2)	0.49149 (14)	0.59727 (16)	0.0533 (4)
C5	0.2528 (2)	0.36155 (14)	0.59124 (15)	0.0518 (4)
H5A	0.1481	0.3023	0.5145	0.062*
C6	0.3372 (2)	0.31899 (14)	0.69796 (15)	0.0495 (3)
C7	0.2570 (2)	0.18182 (14)	0.68832 (15)	0.0521 (4)
H7A	0.1643	0.1241	0.6042	0.063*
C8	0.3036 (2)	0.13212 (15)	0.78734 (16)	0.0561 (4)
H8A	0.3972	0.1867	0.8723	0.067*
С9	0.2112 (2)	-0.00775 (14)	0.76705 (15)	0.0541 (4)
C10	0.2170 (2)	-0.04300 (14)	0.88918 (15)	0.0498 (3)
C11	0.1546 (2)	-0.17913 (14)	0.87190 (14)	0.0489 (3)
H11A	0.1161	-0.2454	0.7855	0.059*
C12	0.1498 (2)	-0.21561 (13)	0.98145 (14)	0.0481 (3)
C13	0.2070 (2)	-0.11488 (15)	1.11254 (15)	0.0520 (4)
C14	0.2677 (3)	0.01868 (16)	1.12890 (16)	0.0618 (4)
H14A	0.3051	0.0854	1.2149	0.074*
C15	0.2735 (2)	0.05406 (15)	1.01826 (16)	0.0595 (4)
H15A	0.3159	0.1445	1.0309	0.071*
C16	0.2872 (3)	0.65426 (17)	0.4888 (2)	0.0767 (5)
H16A	0.2114	0.6609	0.4038	0.115*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H16B	0.4226	0.6749	0.5013	0.115*
H16C	0.2672	0.7171	0.5632	0.115*
C17	0.0536 (3)	-0.45077 (15)	0.85133 (17)	0.0675 (5)
H17A	0.0160	-0.5359	0.8609	0.101*
H17B	0.1689	-0.4466	0.8292	0.101*
H17C	-0.0498	-0.4419	0.7793	0.101*
C18	0.2687 (3)	-0.0633 (2)	1.34896 (16)	0.0791 (6)
H18A	0.2534	-0.1068	1.4116	0.119*
H18B	0.1984	0.0053	1.3528	0.119*
H18C	0.4043	-0.0227	1.3740	0.119*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.1054 (10)	0.0505 (6)	0.0593 (7)	0.0082 (6)	0.0249 (6)	0.0244 (5)
02	0.1247 (11)	0.0433 (6)	0.0503 (6)	0.0126 (6)	0.0249 (7)	0.0136 (5)
03	0.0870 (8)	0.0438 (5)	0.0490 (6)	0.0099 (5)	0.0237 (5)	0.0163 (5)
O4	0.0932 (9)	0.0601 (7)	0.0456 (6)	0.0103 (6)	0.0241 (6)	0.0175 (5)
C1	0.0617 (9)	0.0548 (9)	0.0584 (9)	0.0077 (7)	0.0108 (7)	0.0184 (7)
C2	0.0626 (10)	0.0527 (9)	0.0699 (11)	-0.0042 (7)	0.0074 (8)	0.0112 (8)
C3	0.0703 (10)	0.0426 (8)	0.0694 (10)	0.0012 (7)	0.0272 (8)	0.0142 (7)
C4	0.0661 (9)	0.0441 (7)	0.0526 (8)	0.0107 (6)	0.0282 (7)	0.0161 (6)
C5	0.0592 (8)	0.0423 (7)	0.0479 (7)	0.0053 (6)	0.0203 (6)	0.0108 (6)
C6	0.0558 (8)	0.0413 (7)	0.0493 (7)	0.0099 (6)	0.0212 (6)	0.0126 (6)
C7	0.0623 (8)	0.0410 (7)	0.0484 (8)	0.0101 (6)	0.0193 (6)	0.0120 (6)
C8	0.0663 (9)	0.0463 (7)	0.0510 (8)	0.0109 (6)	0.0183 (7)	0.0158 (6)
C9	0.0709 (9)	0.0419 (7)	0.0483 (8)	0.0164 (6)	0.0205 (7)	0.0147 (6)
C10	0.0576 (8)	0.0433 (7)	0.0472 (7)	0.0149 (6)	0.0173 (6)	0.0156 (6)
C11	0.0591 (8)	0.0413 (7)	0.0425 (7)	0.0135 (6)	0.0161 (6)	0.0119 (5)
C12	0.0529 (7)	0.0429 (7)	0.0463 (7)	0.0127 (5)	0.0158 (6)	0.0153 (6)
C13	0.0571 (8)	0.0533 (8)	0.0436 (7)	0.0141 (6)	0.0163 (6)	0.0170 (6)
C14	0.0808 (11)	0.0481 (8)	0.0435 (7)	0.0099 (7)	0.0177 (7)	0.0065 (6)
C15	0.0761 (10)	0.0410 (7)	0.0521 (8)	0.0089 (6)	0.0190 (7)	0.0110 (6)
C16	0.1139 (15)	0.0487 (9)	0.0759 (12)	0.0227 (9)	0.0402 (11)	0.0273 (8)
C17	0.0930 (12)	0.0451 (8)	0.0586 (9)	0.0092 (8)	0.0286 (9)	0.0137 (7)
C18	0.1081 (15)	0.0776 (12)	0.0417 (8)	0.0153 (10)	0.0212 (9)	0.0179 (8)

Geometric parameters (Å, °)

O1—C4	1.3613 (19)	С8—Н8А	0.9300
O1—C16	1.4174 (19)	C9—C10	1.484 (2)
O2—C9	1.2227 (18)	C10-C15	1.381 (2)
O3—C12	1.3624 (16)	C10-C11	1.4034 (19)
O3—C17	1.4221 (19)	C11—C12	1.3760 (19)
O4—C13	1.3571 (18)	C11—H11A	0.9300
O4—C18	1.416 (2)	C12—C13	1.413 (2)
C1—C2	1.373 (2)	C13—C14	1.378 (2)
C1—C6	1.398 (2)	C14—C15	1.383 (2)
C1—H1A	0.9300	C14—H14A	0.9300

C2—C3	1.374 (2)	C15—H15A	0.9300
C2—H2A	0.9300	C16—H16A	0.9600
C3—C4	1.385 (2)	C16—H16B	0.9600
С3—НЗА	0.9300	C16—H16C	0.9600
C4—C5	1.3893 (19)	С17—Н17А	0.9600
C5—C6	1.385 (2)	С17—Н17В	0.9600
С5—Н5А	0.9300	С17—Н17С	0.9600
C6—C7	1.465 (2)	C18—H18A	0.9600
C7—C8	1.321 (2)	C18—H18B	0.9600
С7—Н7А	0.9300	C18—H18C	0.9600
C8—C9	1.478 (2)		
$C_{4} - C_{1} - C_{1} C_{1}$	118 13 (14)	C12—C11—C10	120 71 (13)
$C_{12}^{12} = 0^{3} = C_{17}^{17}$	117 15 (11)	C12—C11—H11A	120.71 (15)
$C_{12} = 03 = C_{17}$	116.96 (13)		119.6
$C_2 C_1 C_6$	110.90 (15)	$O_3 C_{12} C_{11}$	117.0 125.75(12)
$C_2 = C_1 = C_0$	120.1	03 - 012 - 013	123.75(12) 114.61(12)
C6-C1-H1A	120.1	$C_{11} - C_{12} - C_{13}$	114.01(12)
$C_1 = C_2 = C_3$	120.1	04 013 014	117.04(12) 125.03(14)
$C_1 = C_2 = C_3$	121.40 (13)	04 - 013 - 012	125.05(14) 115.55(13)
$C_1 = C_2 = H_2 \Lambda$	119.5	$C_{14} = C_{13} = C_{12}$	113.33(13) 110.42(13)
$C_3 = C_2 = C_4$	119.5	$C_{14} = C_{15} = C_{12}$	119.42(13)
$C_2 = C_3 = C_4$	119.44 (14)	$C_{13} = C_{14} = C_{15}$	120.43 (14)
$C_2 = C_3 = H_3 A$	120.3	C_{15} C_{14} H_{14A}	119.8
C4 - C5 - HSA	120.5	C_{13} C_{14} C_{14} C_{14} C_{16} C_{15} C_{14}	119.0
01 - C4 - C3	124.01(13)	C10 - C15 - C14	120.90 (14)
01 - C4 - C3	115.55 (14)	C10-C15-H15A	119.5
$C_3 = C_4 = C_3$	119.04 (14)	C14 - C15 - H15A	119.5
C_{0}	120.92 (14)	OI = CI6 = HI6A	109.5
C6—C5—H5A	119.5	OI-CI6-HI6B	109.5
C4—C5—H5A	119.5	H16A—C16—H16B	109.5
05-06-01	118.70 (13)	01—C16—H16C	109.5
01 06 07	119.09 (13)	H16A—C16—H16C	109.5
	122.20 (14)	H16B—C16—H16C	109.5
	126.38 (14)		109.5
C8—C7—H7A	116.8	O3—C17—H17B	109.5
C6—C7—H7A	116.8		109.5
C7—C8—C9	121.95 (14)		109.5
C7—C8—H8A	119.0	H1/A—C1/—H1/C	109.5
С9—С8—Н8А	119.0	Н1/В—С1/—Н1/С	109.5
02	120.54 (14)	O4—C18—H18A	109.5
O2—C9—C10	120.60 (13)	O4—C18—H18B	109.5
C8—C9—C10	118.84 (13)	H18A—C18—H18B	109.5
C15—C10—C11	118.84 (13)	O4—C18—H18C	109.5
C15—C10—C9	122.24 (13)	H18A—C18—H18C	109.5
C11—C10—C9	118.86 (13)	H18B—C18—H18C	109.5
C6—C1—C2—C3	-0.1 (3)	O2—C9—C10—C11	10.2 (2)
C1—C2—C3—C4	-0.5 (3)	C8—C9—C10—C11	-170.99 (14)
C16—O1—C4—C3	-3.3 (3)	C15—C10—C11—C12	-0.1 (2)
C16—O1—C4—C5	177.11 (14)	C9—C10—C11—C12	-177.19 (12)

supplementary materials

C2—C3—C4—O1	-178.98 (16)	C17—O3—C12—C11	7.4 (2)
C2—C3—C4—C5	0.6 (2)	C17—O3—C12—C13	-173.07 (14)
O1—C4—C5—C6	179.54 (13)	C10-C11-C12-O3	179.89 (13)
C3—C4—C5—C6	-0.1 (2)	C10-C11-C12-C13	0.4 (2)
C4—C5—C6—C1	-0.5 (2)	C18—O4—C13—C14	-6.4 (3)
C4—C5—C6—C7	178.97 (13)	C18—O4—C13—C12	174.17 (14)
C2-C1-C6-C5	0.6 (2)	O3—C12—C13—O4	-0.3 (2)
C2-C1-C6-C7	-178.86 (16)	C11—C12—C13—O4	179.21 (13)
C5—C6—C7—C8	-170.61 (14)	O3—C12—C13—C14	-179.81 (14)
C1—C6—C7—C8	8.9 (3)	C11-C12-C13-C14	-0.3 (2)
C6—C7—C8—C9	179.07 (14)	O4—C13—C14—C15	-179.67 (15)
C7—C8—C9—O2	19.4 (3)	C12—C13—C14—C15	-0.2 (3)
C7—C8—C9—C10	-159.47 (14)	C11-C10-C15-C14	-0.5 (3)
O2—C9—C10—C15	-166.86 (15)	C9—C10—C15—C14	176.57 (14)
C8—C9—C10—C15	12.0 (2)	C13-C14-C15-C10	0.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \mathbf{H} \cdots \!$
C5—H5A····O2 ⁱ	0.93	2.57	3.468 (2)	162
C16—H16C····O2 ⁱⁱ	0.96	2.50	3.363 (3)	150
Symmetry codes: (i) $-x, -y, -z+1$; (ii) $x, y+1, z$.				

